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Abstract

Research results show that while Log-
Structured File Systems (LFS) offer the potential for
dramatically improved file system performance, the
cleaner can seriously degrade performance, by as
much as 40% in transaction processing workloads [9].
Our goal is to examine trace data from live file
systems and use those to derive simple heuristics that
will permit the cleaner to run without interfering with
normal file access. Our results show that trivial
heuristics perform very well, allowing 97% of all
cleaning on the most heavily loaded system we
studied to be done in the background.

1. Introduction
The Log-Structured File System is a novel disk

storage system that performs all disk writes contigu-
ously. Since this rids the system of seeks during writ-
ing, the potential performance of such a system is
much greater than in the standard Fast File System
[4], which must make writes to several different loca-
tions on the disk for common operations such as file
creation. The mechanism used by LFS to provide
sequential writing is to treat the disk as a log com-
posed of a collection of large (one-half to one mega-
byte) segments, each of which is written sequentially.
New and modified data are appended to the end of this
log. Since this is an append-only system, all the seg-
ments in the file system eventually become full. How-
ever, as data are updated or deleted, blocks that reside
in the log become replaced or removed and their
space can be reclaimed. This reclamation of space,
gathering the freed blocks into clean segments, is
called cleaning and is a form of generational garbage
collection [3]. The critical challenge for LFS in pro-
viding high performance is to keep cleaning overhead

low, and more importantly, to ensure that I/Os associ-
ated with cleaning do not interfere with normal file
system activity.

 There are three terms that will be useful in
discussing LFS cleaner performance write cost, on-
demand cleaning, and background cleaning.
Rosenblum defines write cost as the average amount
of time that the disk is busy per byte of new data
written, including all the cleaning overheads [8]. A
write cost of 1.0 is perfect meaning that data can be
written at the full disk bandwidth and never touched
again. A write cost of 10.0 means that writes are
ultimately performed at one-tenth the maximum
bandwidth. A write cost above 1.0 indicates that data
had to be cleaned, that is, rewritten to another
segment in order to reclaim space. Cleaning is
performed for one of two reasons: either the file
system becomes full, in which case cleaning is
required before more data can be written, or the file
system becomes lightly utilized and can be cleaned
without adversely affecting normal activity. We call
the first case when the cleaner is required to run, on-
demand cleaning and the latter, optionally running the
cleaner, background cleaning. Using these three
terms, we can restate the challenge of LFS as
minimizing write cost and avoiding on-demand
cleaning.

The cleaning behavior of Sprite-LFS was
monitored over a four-month period [8]. The
measurements indicated that one-half of the segments
cleaned during a four month period were empty and
that the maximum write-cost observed in their
environment was 1.6. While this write cost is
acceptably low, the results do not give an indication of
the impact on file system latency that resulted from
cleaner I/Os interfering with user I/Os. Seltzer et al.
report that cleaning overheads can be substantial, as
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much as 41% in a transaction processing environment
[9]. However, the cleaning cost in a benchmarking
environment is an unrealistic indicator since the
benchmark is constantly demanding use of the file
system. Unlike benchmark environments, the real-
world behavior of most workstation environments is
observed to be bursty [1][5]. For example, consider an
application that has two phases in which it executes.
In phase 1, it creates and deletes many small files. In
phase 2, it computes or uses the network, or
terminates. Examples of such applications include
Sendmail and NNTP servers. In FFS, the writes for
the new data are all performed at the time the creates
and deletes are issued. In LFS, all the small writes are
bundled together into large, contiguous writes, so
bandwidth utilization exceeds 50%, and approaches
100% as file size increases. The cleaner can run
during the non-disk phase of the application when it
does not interfere with application I/O. This workload
is diagrammed in Figure 1.

The goal of this work is to investigate the real
cost of cleaning, in terms of user-perceived latency.
Using trace data gathered from three file servers, we
have found that simple heuristics enable us to remove
nearly all on-demand cleaning (specifically, on the
most heavily loaded system, only 3.3% of the
cleaning had to be done on-demand). The target
operating environment of this study is a conventional
UNIX-based network of workstations where files are
stored on one or more shared file servers. These
results do not necessarily hold for all environments;

CPU
Network

Disk

Disk

Time

Sync. Writes

Log CleaningWrites

Figure 1. Overlapping cleaning with non-disk
activity. The two traces depict FFS and LFS
processing cycles. Both systems are writing the same
amount of data, but FFS must issue its writes
synchronously, resulting in a much longer total
execution time. LFS issues its write asynchronously
and cleans during processing periods, thus achieving
much shorter total execution time.
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they may not apply to online transaction processing
environments where peak or near-peak transaction
rates must be sustained at all times.

Section 2 describes the environments in which
we gathered our measurements, Section 3 describes
the traces we gathered, and Section 4 describes the
tools and simulation model we used. Section 5
presents the results of our simulations, and Section 6
discusses the conclusions and ramifications of this
work.

2. Benchmarking Methodology
All our trace data was collected by monitoring

NFS packets to servers that provide only remote
access. The NFSWatch utility [10], present on many
UNIX systems, monitors all network traffic to an NFS
file server and categorizes it, periodically displaying
the number and percentage of packets received for
each type of NFS operation. We modified the tool to
output a log record for every NFS request. Since
NFSWatch snoops on the ethernet, it does not capture
local activity to a disk. To guarantee that we capture
all activity to the file systems under study, we have
limited our analysis to three Network Appliance
FAServers [2], which are not general-purpose
machines and provide no disk traffic other than serv-
ing NFS requests.

An issue in using Ethernet snooping is the
potential for packet loss at the snooping host, which
could skew the results. To detect such occurrences,
we ran a daemon on a client host which referenced an
unusually named file every 6 minutes. We could then
search the log to find missing records. Only two lost
requests out of 2200 were detected, indicating that the
traces are fairly accurate. The lost packets were both
at times of heavy demand, so while this form of loss
may cause a slight underestimate of total traffic, it
does not affect our estimates of idle time.

Two of the FAServers (Attic and Cellar) reside
in Harvard’s Division of Applied Science and one
(Maytag) resides at Network Appliance’s Corporate
Headquarters. The Harvard environment consists of
approximately 90 varied workstations (e.g. HP, DEC,
SUN, X86) and X-terminals on two Ethernets. The
DAS user community consists of approximately 100
users, most of whom use UNIX systems for text
processing, email, news, software development,
simulation, trace-gathering, and a variety of research-
related activities. The Network Appliance
environment consists of 90 workstations (mostly



3. The Traces
We modified NFSWatch to log each operation,

recording a timestamp, the sender’s IP address, the
server’s IP address, packet size, request type, and
request specific information. The request-specific
information identifies the file being accessed, the off-
set in the file, and the number of bytes. The traces
were gathered for 24 hours per day for several days (9
for Attic, 12 for Cellar, and 2.5 for Maytag). The
Maytag traces would have been longer, but crashes of
the tracing machine at Network Appliance prevented
us from gathering a single, longer trace. Table 2 sum-
marizes the file system activity during the trace
period.

Because we gathered the trace data by
capturing NFS requests, there are a few limitations in
our data. The NFS_CREAT call returns an inode
number (as part of the file handle) which is not
captured by our trace gathering tools. In order to
determine which inode was created in response to the
NFS_CREAT call, we perform a look-ahead to the
next NFS_WRITE or NFS_SETATTR call from the
same client for the same file system and assume it
belongs to the newly created inode. There are only
two cases that are problematic: the creation of two or

Characteristic Attic Cellar Maytag

Total Requests 4.0 M 1.5 M 7.5 M

Data Read Requests 835 K 177 K 495 K

Reads from Cache 20.3 GB 8.9 GB 36.6 GB

Reads from Disk 7.1 GB 1.1 GB 3.4 GB

Data Write Requests 349 K 194 K 330 K

User Writes to Disk 3.4 GB 1.5 GB 5.5 GB

Directory Reads
lookup, readdir

1.9 M 0.9 M 2.3 M

Directory Modifications
create, mkdir, rm, rename,
rmdir

43 K 13 K 410 K

Inode Updates 427 K 215 K 764 K

Trace Length 9 days 16 days 2.5 days

File System Size 4 GB 1 GB 8 GB

Disk Space Utilization 90% 90% 90%

Table 2. Summary of trace data collected on the
three FAServers. All traces were gathered using the
NFSWatch utility. We adjusted the disk sizes to
achieve 90% utilization through most of the traces.

Sparcstations,) X-terminals, PCs, and Macintoshes;
the servers and some clients are on an FDDI ring.
These machines service all business aspects of a small
computer company: software development, quality
assurance, manufacturing, MIS, marketing, and
administration. The Network Appliance user
community is approximately 60 users, of which 15-20
are heavy UNIX users, another 5-10 are casual users
and the remaining use the PCs and Macintoshes
nearly exclusively, placing little load on the NFS
servers.

Table 1 summarizes our measurement
environments. The client column indicates how many
of the machines do not serve any files while the server
column indicates how many of the machines act as
NFS servers. The eight servers in the Harvard
environment serve approximately 50 file systems. The
nine servers in the Network Appliance environment
serve approximately eleven file systems.

Machine Type
Harvard DAS

(Attic and
Cellar)

Network
Appliance
(Maytag)

Clients Servers Clients Servers

 HP700 9 1 0 0

Sun 3 0 2 0 0

SparcStations 38 2 15 2

DEC Alphas 5 1 0 0

DEC MIPS 4 0 0 0

FAServer 0 2 0 3

x86 (DOS and UNIX) 6 1 17 5

SGI 3 0 1 0

Macintosh 1 0 31 0

NeXT 5 0 0 0

Router
terminal concentrators

5 0 2 0

X-Terminals 12 0 13 0

Total 88 9 79 10

Table 1. Measurement Environment. This table
shows the per-machine-type breakdown of both the
DAS and Network Appliance environments.



more files in rapid succession by the same client and
the creation of a file which is not immediately written,
and whose attributes are not set. Both of these cases
are detectable and a pass over our traces reveals that
we correctly matched the NFS_CREAT with the
inode number 99% of the time

NFS caching differs from local file system
caching. Since NFS client caches timeout, we record
requests at the server that would normally be satisfied
by the local filesystem buffer cache. However, since
we model a large (10 MB) cache on the server, this
phenomenon does not affect results of disk behavior.
Another artifact of NFS is that writes can arrive at the
server in bursts corresponding to the number of biods
running on the client. As will be discussed in Section
4, we model two different protocols for writing the
NFS requests. These different models allow us to
emulate both NFS and local file system behavior.

The shortcomings of using NFS as our trace-
gathering method are outweighed by its advantages.
By examining traffic on the local Ethernets, our
tracing has no effect on the data gathered (our trace
files are not written to the servers under examination).
Other tracing methods that run on the server itself
would not provide this unobtrusiveness.

4. The Simulator
We analyzed LFS behavior by simulating an

LFS file system for each server. The simulator con-
sists of approximately 4000 lines of ParcPlace Small-
talk in 55 classes. The simulator maintains a ten
megabyte cache of in-memory blocks and maintains
counts of the number of operations requested, the
cache hit rate, the number and placement of I/Os in
response to NFS requests, and the number of sectors
read and written for on-demand and background
cleaning. In addition, a graphical display depicts the
file system during simulation, enabling the user to
visualize file layout, data expiration, and cleaning.
The simulator processes trace records at a rate of
approximately 1000 records per second (half that if
the graphical display is updated frequently). If
desired, the simulation can be slowed sufficiently that
every disk access can be observed graphically.

Since we are analyzing a live file system, we
must create an equivalent LFS version of the file
system as it exists before our tracing begins. We can
then apply our trace data to this initial state. Since the
file system under study is not an actual LFS, we must
process the existing initial configuration and create an

LFS that realistically depicts the file layout one would
expect on a LFS. The main point of interest in the
initial state is how files are distributed across
segments. In an ideal configuration, each file would
be allocated contiguously on disk and all files smaller
than a segment would reside within the same
segment. In reality, files may be distributed across
multiple segments because of the order in which
writes occur. If writes to many different files are
intermixed, then segments may contain parts of
several files. In order to create a realistic initial state,
we use the timing of NFS operations in the actual
traces to provide an indicator of how much files
should be interleaved in the initial state.

Before tracing, we snapshot the file system to
record the size of every file. We group the files into
bins based on the log2 of the number of blocks in the
file. We then process the traces to compute the
average number of segments spanned by files of each
bin size. Finally, we take each file in the initial
configuration and distribute it evenly to the average
number of segments spanned by files of its size.
Within a segment, we allocate files sequentially. In
this manner, we create an initial configuration
consistent with the data gathered in our traces. To
reduce the memory requirements of the simulation,
files that are never referenced during the trace do not
have space allocated for them on the disk.

The simulator provides a high-level model of
LFS. It maintains file objects that record the location
of their blocks, and directory objects that contain lists
of the files they contain. The inode map, which maps
inode numbers to the disk blocks in which they reside
[7], is not directly simulated. Instead, each file is
assessed 16 bytes of overhead in addition to the
blocks that comprise it; this overhead is written as
part of the segment summary.

The servers simulate a ten megabyte least-
recently-used cache of data blocks, directory data, and
inodes. If requested data are present in the cache, the
request is serviced immediately and no disk operation
is invoked. If the data are not present, then a disk
request is scheduled.

 The simulator reads each trace record and
examines the operation type. If the record is a read
operation (either data or meta-data), the simulator
consults the appropriate object and determines if the
required data are in the cache. If they are, the
referenced data are made most-recently-used (MRU).
If they are not, a disk request is recorded and the new



blocks are added to the cache. If the request is a write,
then the data are added to the current segment, the old
copy of the data (if it exists) is marked invalid in the
in-memory representation of the disk map, and the
simulator counters are updated. In a real LFS data are
not explicitly marked invalid; instead the number of
live bytes are maintained per segment and the cleaner
detects invalid blocks by consulting the file meta-data
(i.e. inode). Our explicit marking of data does not
change the behavior of cleaning, it merely simplifies
our implementation.

 We simulate two write algorithms The first,
called NFS-async, does not provide synchronous NFS
semantics. It assumes that either the file systems are
mounted with the unsafe NFS option [6] or that the
system is equipped with at least two segments worth
of non-volatile RAM into which segments are written
before they are transferred to disk. In either case, the
system caches data until a full segment accumulates
before writing it to disk. The second model, NFS-
synch, supports the synchronous behavior of NFS by
writing a partial segment for each operation.

5. Results
Our results fall into three categories. First, we

examine the behavior of the disk system, analyzing
the frequency and length of idle intervals. The distri-
bution of idle intervals indicates what heuristics will
be effective for initiating the cleaner. Using these heu-
ristics, we then examine how much data accumulates
between cleaner invocations. This determines the
maximum disk utilization that should be employed to
avoid cleaner interference with normal disk activity.
Finally, we examine the disk queue lengths that arise,
giving an indication of the latency observed by the
clients.

5.1. Idle Time Distribution
During the simulation, we recorded statistics

on the length of idle intervals at the disk. For each of
the servers under study, Figure 2 shows the distribu-
tion of intervals during which the disk was idle under
the NFS-async model. We have removed all idle gaps
of less than one second since these intervals predomi-
nate, but are sufficiently short that the cleaner will
never run in them. The important feature of these dis-
tributions is that while most gaps were small (less
than 1 second and not depicted in Figure 2) the abso-
lute number of large intervals is sufficient to perform
cleaning. More importantly, a long interval (greater
than 2 seconds) is a good predictor of an even longer
interval (greater than 4 seconds). For our file systems

using the asynchronous NFS algorithm, the probabil-
ity that an idle period is at least four seconds long,
once it is already two seconds long is more than 95%
(96% on Attic, 97% on Cellar, and 98% on Maytag).

Because cleaner and user disk accesses are
identified as such in our simulated disk queue, we
were able to compute another measure of cleaning
impact: the average number of cleaner writes in the
queue when a user write was added to the queue.
Table 3 shows the results, which indicate that
interference is minimal - at most 0.07 requests.

Figure 3 shows the same distributions as
Figure 2, but for the NFS-sync model. In this case,
each NFS request that changes the file system (create,
write, mkdir, rm, rmdir, rename, setattr) is written to
disk as a partial segment. This reduces the number of
long idle gaps and also increases the need for cleaning
since each partial segment introduces 512 bytes of
overhead for at most eight kilobytes of data. Still, the
probability that a two second interval is a good
predictor for an interval greater than four seconds is
still high (96% on Attic, 98% on Cellar, and 86% on
Maytag). The gradual slopes in the cumulative
distributions shown in Figure 2 emphasize this
phenomena.

Despite the fact that Maytag seems to have the
highest chance of cleaner activity being interrupted,
the data in Table 3 shows that the interference is the
least of the file systems. The cleaner on Maytag was
generally able to clean less-utilized segments than on

System Model Interference

Attic
NFS-sync 0.069

NFS-async 0.067

Cellar
NFS-sync 0.057

NFS-async 0.072

Maytag
NFS-sync 0.039

NFS-async 0.022

Table 3. Cleaner Interference. Interference
numbers are the average number of cleaner requests
in the disk queue when a user request is added. These
numbers place an upper bound on the amount of
cleaner interference with user activity. Cleaner
activity writes to the same part of the disk as user
activity, so often cleaner writes can be scheduled
along with user writes without a major performance
impact.



Figure 2. Idle Time Distributions for NFS-async.
The three graphs show the distribution of idle disk
intervals for each server. While most gaps are very
short (the number of gaps less than 1 second
completely dominates the distribution and has been
omitted from these graphs), there are a sufficient
number of large idle intervals that background
cleaning can be performed frequently. The bump in
Attic’s trace at 120 seconds probably indicates a
periodic process which often terminated an idle
interval by performing some activity every 2 minutes.
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Figure 3. Idle Time Distributions for NFS-sync.
These distributions show similar behavior to those in
Figure 2 but with a steeper curve. Since writes are
sent to the disk immediately upon their arrival, there
are more individual requests to the disk, the disk is
used less efficiently and there are more shorter idle
intervals. Even so, using a two second gap as a
predictor is an effective heuristic for finding gaps that
are large enough to permit cleaning of at least one
segment.
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Attic or Cellar; the smaller average size of cleaner
writes is responsible for the lower cleaner
interference.

To understand how we can fit cleaning into
these gaps, we need to quantify the time required to
clean. In the best case, cleaning is free because there
are segments that have no live data remaining in them
(they are easily identified because we keep a count of
the number of live bytes in each segment). In the
general case, cleaning is summarized by the following
algorithm.

• Read a segment from disk.

• Determine which blocks are live.

• Append the live blocks to the end of the log.

Figure 4. Cumulative Idle Time distributions. The
gentle slope of the cumulative distributions between
two and four second gaps emphasizes the predictive
nature of two second gaps. Although most gaps are
quite small (all gaps less than one second have been
omitted from these distributions as is the case in the
previous figures), there are still a sufficient number of
large intervals in which to clean.
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• Mark the segment clean.

The two long-running steps in this algorithm
are the first, reading one megabyte from disk, and
third, rewriting data into the log. In the pessimistic
case, the read of the old segment will be a one mega-
byte sequential read, which takes well under a second
on most of today’s disks (e.g. a DSP 3501 SCSI disk
can read 1 MB in approximately one-half second).
Frequently, there will be few enough live bytes in the
segment that we can avoid reading the entire segment
and only read the blocks that need to be cleaned. The
write time depends on the utilization of the segment
being cleaned. If the segment utilization is very high,
then we may need to write most of a megabyte; if the
segment is lightly utilized, we can write only a few
blocks. Even in the worst case, a one megabyte write
takes only 0.75 seconds on the DSP 3501. In this
worst case, we can clean at a rate of one segment per
1.25 seconds and in most cases, we can clean at a sub-
stantially higher rate. Therefore, if we use the two
second idle time predictor, more than 90% of the time
the cleaner will complete at least one segment’s worth
of cleaning before any user requests arrive.

Using this algorithm on our trace data, we
found that we were able to use only background
cleaning on Attic and Cellar (although disk utilization
was 90% on all three servers, Attic and Cellar never
ran sufficiently close to the file system capacity that
on-demand cleaning was triggered). Maytag required
occasional on-demand cleaning — 3.3% of the total
number of segments cleaned were on-demand.

5.2. Dirty Data Accumulation

Figure 5 shows the distribution of dirty data
accumulation between cleaning intervals in the NFS-
async model and Figure 6 shows the distributions in
the NFS-sync model. The cumulative distributions are
shown in Figure 7.

On Maytag, the most heavily utilized system,
the write volume due to user requests was about 2.2
GB per day. Running the cleaner to generate 2.2 GB
of clean segments takes no more than 2750 seconds
on the DSP 3501 disk - in practice, we estimate it to
take about one third of this time on average. The large
number of significant idle gaps during the day
allowed cleaning to occur many times during the day,
so that large quantities of unclean segments did not
accumulate.

The cumulative distributions shown Figure 7
illustrate how rarely large amounts of data are written



Figure 5. Distributions of Accumulated Dirty
Data in the NFS-async model. Except for a few
occurrences, the the amount of data written before
cleaning was possible was small - less than 100 MB.
On a multi-gigabyte file system that is limited to 90%
fullness, there is plenty of space for accomodating
this amount of data without requiring on-demand
cleaning. We never observed more than 350 MB
(4.5% of Maytag’s disk space) written before cleaning
occurred.
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Figure 6. Distributions of Accumulated Dirty
Data in the NFS-sync model. In the NFS-sync
model, we never observed more than 420 MB (5.2%
of Maytag’s disk space) written before cleaning
occurred.
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before cleaning can be done. More than 96% of writes
are less than one megabyte; 99% are less than four
megabytes. This is true across all file systems studied.

5.3. Queueing Delays

The last area of investigation is the queuing
delays observed at the disk. Log-structured file sys-
tems use the disk system efficiently by issuing large,
sequential transfers. If the disk is being used effi-
ciently, queueing delays should be kept to a mini-
mum. However, large transfers also keep the disk
busy for long bursts of time. Incoming requests that
get queued after one of these long writes can wait for
a long time. Figure 8 shows the queuing delays
observed for the NFS-async model and Figure 9
shows the queueing delays for the NFS-sync model.
The cumulative distributions are shown in Figure 10.

Figure 7. Cumulative Distributions of Dirty Data
Accumulation. Note that the range of the graph starts
at 95%. The vast majority (96%) of all write bursts
are small (less than 1 MB). Despite the substantial
difference in the average traffic levels to these
machines, the distribution of many-megabyte bursts
of write activity is similar.
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Figure 8. Distribution of Queueing Delays in the
NFS-sync model. Comparing the two models, it is
evident that delays are frequently longer in the NFS-
sync case.
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Figure 9. Distribution of Queueing Delays in the
NFS-async model. Although there were occasional
occurrences of large delays, most of the delays were
small.
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All three file systems under both models could
service the majority of requests with no queuing delay
at all. Delays in the NFS-sync model were generally
longer, due to both the increased write volume, and
the fact that all writes for one request must complete
before writes for another begin, which increases the
number of rotational latencies incurred between
writes.

Because our traces capture the time at which
interactions happened between real clients and
servers, the interval between closely spaced
operations depends strongly on the speed of the real
servers, as clients generally limit their maximum
number of outstanding requests. To the extent that our

Figure 10. Cumulative Distributions for Queueing
Delays. For all systems, more than 70% of the delays
were zero, i.e. the request was put on an otherwise
empty disk queue. Delays in the NFS-sync model
were generally longer, probably due to both the
increased write volume, and the fact that all writes for
one request must complete before writes for another
begin, which increases the number of rotational
latencies incurred between writes.
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simulated file systems were faster or slower for
various operations, the queuing delay may not be
representative of a real system. However, the
differences between NFS-sync and NFS-async reflect
a real performance difference.

6. Conclusions
The simulation results are very encouraging for

LFS. With a simple heuristic of cleaning whenever
the disk has been idle for two seconds, we can virtu-
ally eliminate any user-perceived cleaning latency.
Only a very small portion of disk queue latency is due
to cleaner activity. Our results hold across two differ-
ent environments: a university research environment
and a commercial product development environment.
However, some workloads (e.g. online transaction
processing) may not demonstrate the idle-gap distri-
bution on which this heuristic depends. In these cases,
log-structured file systems must rely on other cleaning
solutions [9].

7. Availability
 The final trace set and the simulator software

will be made available via Mosaic, at the URL:
http://das-www.harvard.edu/users/students/

Trevor_Blackwell/Usenix95.html
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